

658.512.011.56:62-82(075.8)

ББК: 30.2-5-05+34.447я73

A 22

Редакционная коллегия: Петришин Г.В. (декан машиностроительного факультета, к.т.н., доцент), Невзорова А.Б. (заведующий кафедрой НГР и ГПА, д.т.н., профессор), Андреевец Ю.А. (м.т.н., ст. преподаватель)

Автоматизированное проектирование гидропневмоприводов: сборник стендовых докладов студенческой науч.-практ. конф./

Гомель 9 января 2023 г. [Электронный ресурс]. – Гомель: ГГТУ им. П.О. Сухого, 2023. – 23 с.

.

Издается в авторской редакции

Сборник стендовых докладов содержат результаты проектных исследований студентов 5 курса специальности 1-36 01 07 — Гидропневмосистемы мобильных и технологических машин.

Эффективное применение гидро- и пневмоприводов во многом зависит от правильного выбора их параметров и соответствия характеристик заданным требованиям, поэтому важной задачей является использование актуальных и адекватных методов расчета этих приводов. В теории гидравлических и пневматических приводов можно выделить две группы задач: первая связана с исследованием существующих систем и аппаратов, вторая — с проектированием новых приводов и устройств, позволяющих обеспечить заданные характеристики и законы движения рабочих органов. Создание нового технического объекта — сложный и длительный процесс, в котором стадия проектирования имеет решающее значение в осуществлении замысла и достижении высокого технического уровня. Моделирование является одним из важнейших этапов проектирования любого технического объекта, в том числе и современных гидравлических систем, позволяя заменить или значительно сократить этапы наладки и натурных испытаний.

Для широкого круга читателей

© Оформление. ГГТУ им. П.О. Сухого, машиностроительный факультет, 2023

СОДЕРЖАНИЕ

Колодко А. Проектирование гидросистемы автоматической линии для обработки полиэфирных нитей
Черленок И.В. Проектирование 3D-модели гидростанции механизированного моста
Пицуха Д.А. Проектирование гидропривода гидросистемы машины штабелирующей АМКАДОР PS90 6
Дещеня А.Д . Проектирование гидростанции для линии автоматической холодного профилирования
Кирейчук С.М . Проектирование гидросистемы рабочего оборудования вилочного автопогрузчика Амкадор 451 А
Ковалёв А.В . Пресс для ремонта рессор локомотивов ВЛ-80
Иванюк Н.В. Разработка гидропривода приспособления для уборки рапса и рабочих органов жатки зерновой 10
Попов И.П. Проектирование гидростанции испытательного стенда листовых рессор локомотивов ВЛ80
Лоцманов С.А. Проектирование гидропривода гусеничного шасси источника сейсмических вибрационных сигналов 12
Зайцев Н.А. Гидронавесная система трактора МТЗ 35522
Кукта М.С. Проектирование пресса гидравлического для запрессовки полого редуктора гидромотора
Федорович Д.И. Разработка гидропривода рабочего оборудования универсального погрузчика
Хвост И.В. Проектирование стенда для испытания шестерённых насосов
Петренко С.А. Разработка насосного агрегата электрогидравлической системы. управления
Самойленко А.В. Проектирование гидроблока циркуляционной станции18
Степанов А.С. Разработка пресса для сборки и разборки гусеничных траков
Новиков Д.В. Проектирование гидростанции для управления дисковым тормозом буровой лебедки

Проектирование гидросистемы автоматической линии для обработки полиэфирных нитей

Колодко Александр ГА-51

Научный руководитель – д.т.н., профессор Невзорова А.Б.

• Введение

САПР предназанчены для обеспечение различных этапов цикла проектирования в машиностроении и т.п. - от создания эскиза чертежа до 3D модели.

• Цель работы

С помощью КОМПАС-3D, разработать 3D модели и на основе моделей разработать основной комплект чертежей гидросистемы для обработки полиэфирных нитей.

Методика выполнения

Существуют два основных подхода к проектированию изделий — «снизу вверх» и «сверху вниз». В работе использовалась методика «снизу вверх», заключающуюся в сборке узла от отдельных деталей к общей единице.

Рисунок 1 — Крышка бака с блоком управления



Рисунок 2 - Блок управления

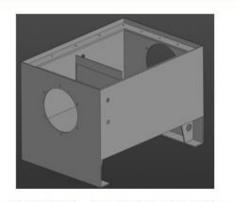


Рисунок 3 - Бак гидравлический



Рисунок 4 - Станция в сборе

• Что получилось

Были разработаны 3D модели таких узлов как: крышка бака (рисунок 1), блок управления (рисунок 2), бак гидравлический (рисунок 3) и станция (рисунок 4), а также комплект чертежей на основе этих моделей.

• Заключение

В ходе лабораторных работ была разработанна 3D модель гидростанции и на основе модели были созданны сборочные чертежи и спецификации к ним.

• Список литературы

- Азбука КОМПАС-3D. Аскон 478 с.-2020.
- 2. FOCT 16770-86
- 3. FOCT12.2.007.0-75

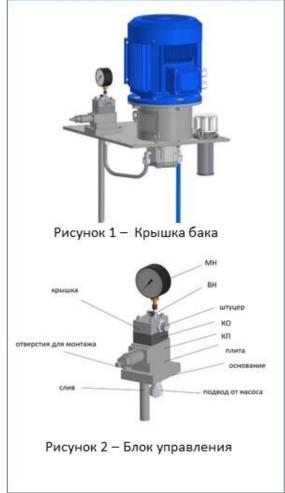
Проектирование 3D-модели гидростанции механизированного моста

ONE THE COMM PHUSEPCUTET WHENIT TO CITE!

Черленок И.В, гр. ГА-51,

Научный руководитель – д.т.н., профессор Невзорова А.Б.

Введение


Гидростанция — техническое устройство (система), преобразующее различные виды энергии в механическую энергию жидкости, и управляющее движением потока этой жидкости.

Цель работы

Разработать 3д модель сборки гидростанции механизированного моста в соответствии с техническими требованиями к её конструкции.

Методика выполнения

Использована методика «снизу вверх», которая заключается в сборке узла от отдельной детали к общей единице.

Что получилось

Запроектированы пакеты документов 3D-моделей для сборки гидростанции механизированного моста в который входят: крышка бака (рисунок 1), блок управления (рисунок 2), бак гидравлический (рисунок 3), гидростанция механизированного моста (рисунок 4).

• Заключение

Разработана Зд модель сборки гидростанции механизированного моста с присоединением основных узлов в соответствии с гидравлической принципиальной схемой.

• Список литературы

- 1. Андреевец, Ю.А Учебно-методическое пособие по курсовому проектированию ТиПГПС / Ю.А Андреевец. Гомель: ГГТУ им. П. О. Сухого, 2022. 89 с.
- Михневич А.В. и др. Методические указания к курсовой работе по курсу «Гидравлика, гидроприводы и гидропневмоавтоматика» для студентов специальности «Технология машиностроения». Часть І. Гомель, 1995 (М.У. №1834).

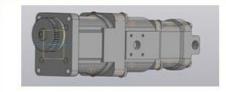
механизированного

Проектирование гидропривода гидросистемы машины штабелирующей АМКАДОР PS90

Пицуха Д.А, гр. ГА-51,

, Научный руководитель – д.т.н., профессор Невзорова А.Б.

Введение


Штабелёр – это транспортное средство, оборудованное механизмом для подъёма, штабелирования (хранения и перевозки грузов с установкой их друг на друга) или перемещения интермодальных транспортных единиц (то есть грузов, приспособленных для перевозки различными видами транспорта).

• Цель работы

Разработать гидропривод гидросистемы машины штабелирующей АМКАДОР PS90.

• Методика выполнения

В своей работе использовал Компас 3D, в котором были разработаны 3D узлы и на базе их спроектированы сборочные чертежи гидросистемы.

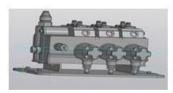


Рисунок 1 — Насос и распределитель в сборе

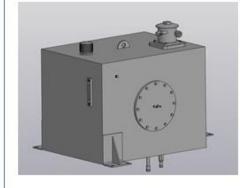


Рисунок 2 - Бак гидравлический

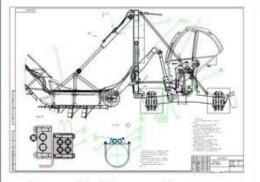


Рисунок 3 — Сборочный чертеж гидросистемы вид сбоку

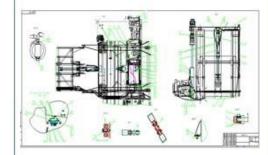


Рисунок 4 – Сборочный чертеж гидросистемы вид сверху

• Что получилось

Были созданы 3D-модели насоса и распределителя (рис.1), бак гидравлический (рис.2), сборочный чертеж гидросистемы машины вид сбоку и вид сверху (рис.3-4).

Заключение

В результате проделанной работы были спроектированы 3D узлы и сборочные чертежи гидросистемы машины AMKAДOP PS90.

• Список литературы

1. РЭ машины штабелирующей AMKAДOP PS90, 2013.

2. «Гидропневмосистемы мобильных и технологических машин»/ автсост.: Ю. А. Андреевец, Ю. В. Сериков. – Гомель: ГГТУ им. П. О. Сухого, 2007. – 42 с.

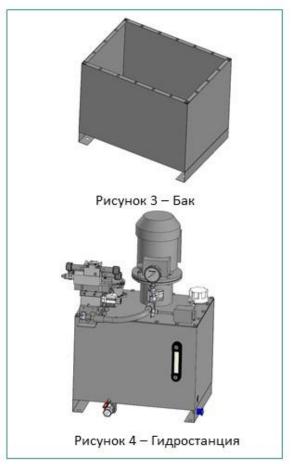
Проектирование гидростанции для линии автоматической холодного профилирования

Дещеня А.Д., гр. ГА-51

Научный руководитель – д.т.н., профессор Невзорова А.Б.

• Введение

САПР является важным звеном в промышленном конструировании, широко используемым во многих отраслях.


• Цель работы

Спроектировать гидростанцию для линии автоматической холодного профилирования в программе КОМПАС-3D.

Методика выполнения

Система спроектирована с помощью метода, который подразумевает сборку узла из отдельных элементов в один общий.

• Что получилось

Спроектированы 3Dмодели: крышка бака (рис. 1),блок управления (рис. 2), бак (рис. 3), и гидростанция (рис. 4).

Заключение

В результате лабораторных работ была спроектирована гидростанция для линии автоматической холодного профилирования в программе КОМПАС-3D.

Список литературы

- 1. FOCT 2.701.8
- 2. Свешников В.К., Усов А.А. Станочные гидроприводы.М., Машиностроение, 2004

Проектирование гидросистемы рабочего оборудования вилочного автопогрузчика Амкадор 451А

Кирейчук С.М., ГА-51

Научный руководитель – д.т.н., профессор Невзорова А.Б.

• Введение

Для выполнения разнообразных грузовых операций используются вилочные погрузчики.

• Цель работы

Проектирование гидросистемы рабочего оборудования вилочного автопогрузчика.

Методика выполнения

Спроектированы с помощью программы Компас 3-D трехмерные модели насоса, распределителя (рис. 1), гидробака (рис. 2). На их основе разработаны сборочные чертежи. Также вычерчен общий вид автопогрузчика (рис. 3).

• Что получилось

На чертеже общего вида автопогрузчика обозначены гидроаппараты, соединенные РВД. Габаритный чертеж автопогрузчика указан на рисунке 4.

Заключение

В результате проделанной работы спроектированы: насос, распределитель, бак, габаритный чертеж автопогрузчика Амкадор 451A.

Список литературы

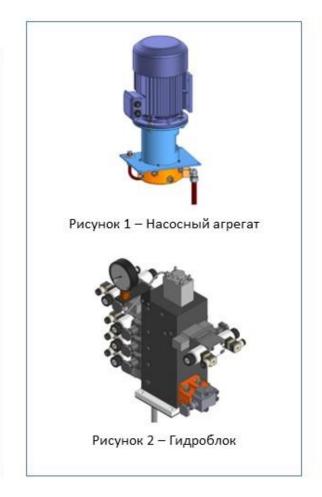
1. Теория и проектирование гидропневмосистем/ автсост.: Ю.А. Андреевец, Ю.В. Сериков. – Гомель: ГГТУ им. П.О. Сухого, 2007. – 42 с 2. РЭ «Автопогрузчик вилочный АМКОДОР 451А».

Пресс для ремонта рессор локомотивов ВЛ-80

Ковалёв А. В., гр. ГА-51

Научный руководитель – д.т.н., профессор Невзорова А.Б.

• Введение


Пресс предназначен для сборки и разборки листовых рессор 5TH.285.014 локомотивов ВЛ80.

• Цель работы

Спроектировать гидростанцию пресса для ремонта рессор локомотивов ВЛ-80 в соответствии с техническими требованиями

Методика выполнения

Выполняется математический расчет основных параметров узла машины, строится 3D-модель, выполняются сборочные чертежи.

• Что получилось

Были созданы 3D-модели насосного агрегата (рис. 1), гидроблока (рис. 2), гидробака (рис. 3), гидростанция (рис. 4)

• Заключение

Была спроектирована 3D-модель гидростанции пресса для рессор локомотивов ВЛ-80, разработан комплект чертежей, спецификаций.

• Список литературы

- 1. Свешников В.К., Усов А.А. Станочные гидроприводы. Справочник.
- Компас 3D. Руководство пользователя

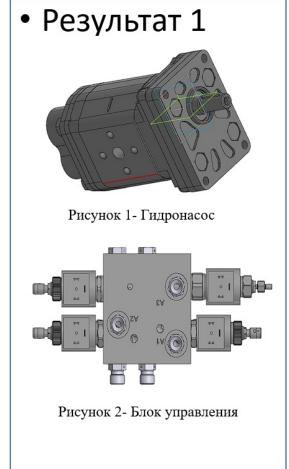
9

Разработка гидропривода приспособления для уборки рапса и рабочих органов жатки зерновой

Иванюк Н.В, гр. ГА-51,

Научный руководитель — д.т.н., профессор Невзорова A.Б.

• Введение


Приспособление используется для уборки семян рапса на равнинных полях с уклоном до 8° и обеспечивают высоту среза не более 55 мм, используется совместно с жаткой зерновой. Устанавливается на зерноуборочные комбайны ГОМСЕЛЬМАШ.

• Цель работы

Разработать Зд модели основных рабочих органов жатки зерновой и приспособления для уборки рапса, в соответствии с техническими требованиями.

• Методика выполнения

Сущность 3D-технологии заключается в создании пространственной виртуальной модели детали. Затем по модели строится чертеж.

• Что получилось

Получилось спроектировать рабочие органы приспособления для уборки рапса и жатки зерновой такие как: гидронасос (рисунок 1), блок управления (рисунок 2), бак гидравлический (рисунок 3), гидролинии жатки зерновой и приспособления для уборки рапса в комбайне (рисунок 4).

• Заключение

В ходе работы были разработаны 3д модели рабочих органов приспособления для уборки рапса и жатки зерновой, а также сборочные чертежи и спецификации к ним.

• Список литературы

- 1. Свешников В.К., Усов А.А. Станочные гидроприводы.
- Азбука КОМПАС-3D
- 3. Руководство по эксплуатации КЗК-9-1540000A РЭ

10

Проектирование гидростанции испытательного стенда листовых рессор локомотивов ВЛ80

Попов И. П., гр. ГА-51

Научный руководитель – д.т.н., профессор Невзорова А.Б.

• Введение

Стенд предназначен для испытания листовых рессор локомотивов под нагрузкой с целью последующего их подбора и сортировки в соответствии с правилами ремонта тягового подвижного состава.

• Цель работы

В ПО Компас 3D разработать 3D-модели и основной комплект чертежей гидростанции испытательного стенда листовых рессор локомотивов ВЛ80, входящих в конструкцию гидростанции.

Методика выполнения

Рассчитываются основные параметры, выбираются по найденным параметрам узлы гидростанции, разрабатываются 3D-модель выполняются сборочные чертежи.

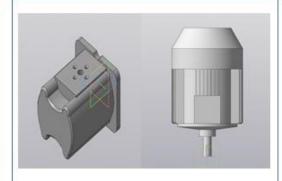


Рисунок 1 – Основные части насосного агрегата

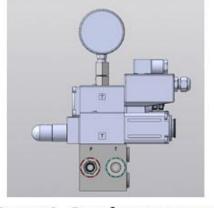


Рисунок 2 - Гидроблок управления

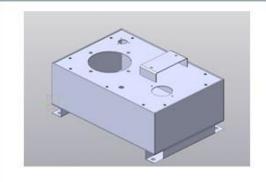


Рисунок 3 - Бак гидравлический

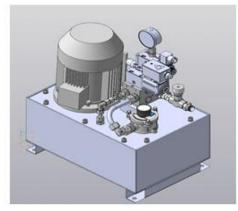


Рисунок 4 - Гидростанция

• Что получилось

Запроектированы сборочные чертежи насосного агрегата (рисунок 1), гидроблока управления (рисунок 2), бака гидравлического (рисунок 3) и гидростанции (рисунок 4).

• Заключение

В ходе выполнения работы была создана 3D-модель, комплект чертежей гидростанции испытательного стенда листовых рессор локомотивов ВЛ80 и спецификация.

• Список литературы

1.Андреевец, Ю. А. Учебнометодическое пособие по курсовому проектированию ТиПГПС/ Ю. А. Андреевец. — Гомель: ГПУ им. П. О. Сухого, 2022.

2. Азбука Компас 3D

Проектирование гидропривода гусеничного шасси источника сейсмических вибрационных сигналов

Лоцманов Сергей Александрович, группа ГА-51 Научный руководитель — д.т.н., профессор Невзорова А.Б.

Введение

Вибрационный источник предназначен для возбуждения вертикальных сейсмических колебаний с заданной амплитудой и частотой в геологической среде путем механического вибрационного воздействия на поверхность грунта при проведении сейсморазведочных работ.

Цель работы

Разработка 3Д моделей основных рабочих органов гидравлической трансмиссии вибрационной машины на основе чертежей, взятых в каталоге, таких как гидронасос, бак и гидроматор

Методика выполнения

Произведен расчет основных параметров рабочих органов, разработаны 3Д модели, созданы чертежи на основе 3Д моделей

Результат 1

Рисунок 1 - Гидронасос Danfoss 74cc

Рисунок 2 - Гидромотор Parker PGG200

Результат 2

Рисунок 3 - Бак гидравлический VZH028

Рисунок 4 - Источник сейсмических вибрационныв сигналов СВ 30/150

Что получилось

Созданы 3Д модели гидронасоса Danfoss 74cc (рис.1), гидромотора Parker PGG200(рис.2), бака гидравлического VZH028 (рис.3)

Заключение

В ходе выполнения работы были спроектированы 3Д модели на основе чертежей, сборочные чертежи и спецификации к ним для трансмиссии вибрационного источника сейсмических сигналов.

Список литературы

- 1. Азбука КОМПАС-3Д
- 2. FOCT 2.319-81
- 3. FOCT 2.503-90
- 4. Андреевец Ю.А Учебнометодическое пособие по курсовому проектированию ТиПГПС/ Ю.А Анпреец.-Гомель: ГГТУ им. П.О. Сухого, 2022.-89.

Гидронавесная система трактора МТЗ 3522

Зайцев Никита Алексеевич, ГА-51 Научный руководитель — д.т.н., профессор Невзорова А.Б.

• Введение

Гидронавесная система обеспечивает работу переднего и заднего навесных устройств и гидрофицированных рабочих органов агрегатируемых с трактором сельскохозяйственных машин.

• Цель работы

Разработать гидронавесную системы трактора, включающую в себя систему ПНУ и ЗНУ

• Методика выполнения

В своей работе использовал САПР Компас 3D, в которой были спроектированы 3D узлы системы и основные сборочные чертежи

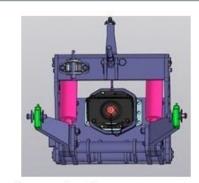


Рисунок 1 - Передненавесное устройстро(ПНУ) трактора

Рисунок 2 - Задненавесное утройство трактора

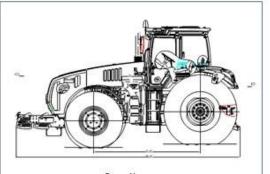


Рисунок 3 - Общий вид трактора MT3 3522

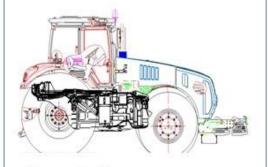


Рисунок 4 - Чертеж трактора с гидравлической системой

Что получилось

Был разработан гидравлический узел системы и нанесен на общий чертеж трактора (рис.4), а также созданы 3D модели составных частей навесной системы: ПНУ (рис.1) и ЗНУ (рис.2)

• Заключение

В результате лабораторных работ разработал комлекты сборочных чертежей и на их основе созданы 3D модели.

Список литературы

- 1. Руководство по эксплуатации трактора МТЗ 3522, MT3, 2010
- 2. Гидрооборудование тракторов Белорус, Г.С.Горин,2018

Проектирование пресса гидравлического для

запрессовки и выпрессовки полого вала

редуктора гидромотора

Кукта М.С.,ГА-51,

Научный руководитель – д.т.н., профессор Невзорова А.Б.

• Введение

Гидравлический прессэто машинный пресс, использующий гидравлический цилиндр для создания сжимающей силы. Так же спользуется гидравлический эквивалент механического рычага.

Цель работы

Разработать 3D модель насосной станции, пресса гидравлического для запресоовки и выпрессовки полого вала редуктора гидромотора.

Методика выполнения

Сущность 3D-технологии заключается в создании пространственной виртуальной модели детали. Затем по модели строится чертеж, причем построение проекций и разрезов выполняется в среде КОМПАС-3D автоматически.

• Результат 1

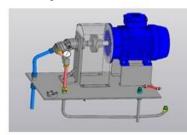


Рисунок 1 — крышка бака со всеми сборочнымы узлами

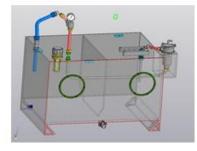


Рисунок 2 – Бак

• Результат 2

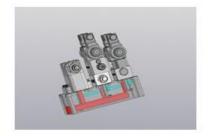


Рисунок 3 – Блок управления

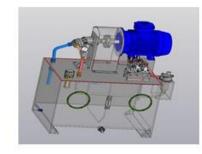


Рисунок 4 – Насосная станция

• Что получилось

разработаны 3D модели: насос и двигатель (рисунок 1), блок управления (рисунок 3), бак (рисунок 2), станция насосная (рисунок 4).

Заключение

В ходе лабораторных работы получилось спроектировать насосную станцию и все узлы дляпресса гидравлического для запресоовки и выпрессовки полого вала редуктора гидромотора.

Список литратуры

- 1. ГОСТ 2.004-08 "Единая система конструкторской документации. Общие требования к выполнению конструкторских и технологических документов на печатающих и графических устройствах вывода ЭВМ"
- 2. Азбука КОМПАС-3D

Разработка гидропривода рабочего оборудования универсального погрузчика Федорович Д.И., гр. ГА-51,

Научный руководитель — д.т.н., профессор Невзорова А.Б.

Введение

Погрузчик используется в сельскохозяйственной и строительной сферах, возможно смена рабочего оборудования.

• Цель работы

Разработать 3D модели основных органов, в соответствии с техническими требованиями.

Методика выполнения

Сущность 3D-технологии заключается в создании пространственной виртуальной модели детали.

• Результат 1

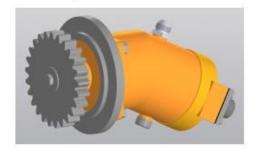


Рисунок 1 - Гидронасос

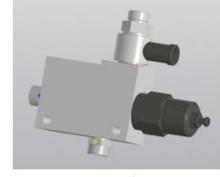


Рисунок 2 - Блок безопасности

• Результат 2

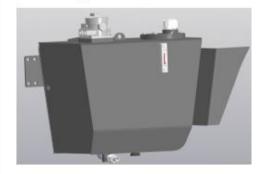


Рисунок 3 - Бак гидравлический

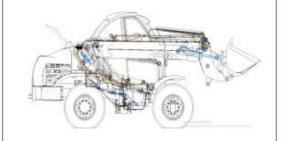


Рисунок 4 — <u>Гидролинии</u> рабочего оборудования

• Что получилось

Были спроектированы 3D модели гидронасоса (рис. 1), блока безопасности (рис. 2), бака гидравлического (рис.3).

• Заключение

В ходе работы были разработаны 3D модели рабочих органов, а также сборочные чертежи и спецификации к ним.

• Список литературы

- 1. Компас 3D. Руководство пользователя
- 2. Азбука КОМПАС-3D
- FOCT 16770-86

Проектирование стенда для испытания шестерённых насосов

Хвост Иван Васильевич, ГА-51,

Научный руководитель - д.т.н., профессор Невзорова А.Б.

• Введение

Испытательный стендоборудование предназначенное для снятия различных характеристик, методом нагрузки испытуемых единиц.

• Цель работы

Проектирование стенда для испытания шестерённых насосов.

Методика выполнения

Расчитываются основные параметры, по ним выбираются управляющие, направляющие и измерительные аппараты, выполняются чертежи узлов и станций. Разрабатываются модели в ПО Компас 3D.

• Результат 1

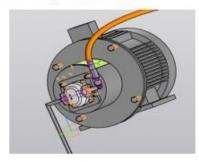


Рисунок 1 – Насосный агрегат

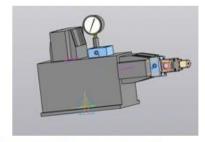


Рисунок 2 - Блок управления

• Результат 2

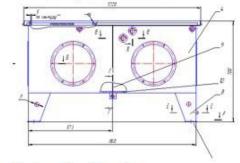


Рисунок 3 - Гидробак

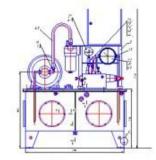


Рисунок 4 - Сборочный чертёж

• Что получилось

В результате работы получили стенд для испытаний шестерённых насосов. В ПО Компас 3D спроектированны модели насосного агрегата (рис.1), блок управления (рис.2), гидробака (рис 3.), установки в сборе (рис.4).

• Заключение

В ходе выполнения работы в ПО Компас 3D были спроектированы 3D модели, сборочный чертёж и спецефикации к стенду для испытания шестерённых насосов.

• Список литературы

- 1. Андреевец Ю.А. Учебнометодическое пособие по курсовому проектированию ТИПГПС /Ю.А.Андреевец.-Гомель: ГГТУ им. П.О.Сухого,2022
- 2. Каталог стандартных изделий Компас-3D.

Разработка насосного агрегата электрогидравлической системы управления

Петренко С.А., гр. ГА-51

Научный руководитель – д.т.н., профессор Невзорова А.Б.

• Введение

Насосный агрегат — насос с приводным двигателем, соединенные между собой упругой муфтой.

• Цель работы

Запроектировать насосный агрегат питания электрогидравлической системы управления.

• Методика выполнения

Для проектирования была использована САПР Компас – 3D, позволяющая создавать 3Д модели гидроаппаратов.

• Что получилось

С помощью САПР Компас – 3D удалось создать 3д модели конструкции насосного агрегата(рис. 1,2) и совместить их в единую сборку(рис. 4)

• Заключение

Был спроектирован насосный агрегат системы управления

• Список литературы

- 1) Аникин Ю. В. Насосы и насосные станции: учебное пособие /2018. 138 с.
- 2) Каталог электродвигателей типа АИР
- 3) Каталог аксиально поршневых насосов boschrexroth.com

Проектирование гидроблока циркуляционной станции

Самойленко А.В., гр. ГА-51 Научный руководитель— д.т.н., профессор Невзорова А.Б.

• Введение

Гидроблок – гидравлическое устройство предназначенное для распределения потоков жидкости, ограничения давления и управления гидравлическим контуром.

Цель работы

Смоделировать гидроблок для циркуляционной станции.

• Методика выполнения

Выбрать аппараты по номинальному расходу и давлению, запроектировать монтажную плиту для их установки.

• Что получилось

Разработаны 3Д модели гидроаппаратов (рис.1) и монтажная плита (рис.3). Смоделирован гидроблок (рис.4)

• Заключение

Запроектирован 3Д чертеж гидроблока циркуляционной станции

• Список литературы

- 1. Свешников В.К., «Станочные гидроприводы», Справочник, М; Мш, 2004г.
- 2. Пинчук В.В. Синтез гидроблоков управления на основе унифицированной элементной базы. Мн.: Технопринт,2001.

Разработка пресса для сборки и разборки гусеничных траков

Степанов А.С. ГА-51,

Научный руководитель – д.т.н., профессор Невзорова А.Б.

• Введение

Пресс предназначен для разборки и сборки траков гусениц бульдозеров.-*

Цель работы

Разработать и спроектировать чертежи и 3Д модели насосной станции к прессу для сборки и разборки гусеничных траков.

Методика выполнения

Рассчитываются основные параметры насосной станции, выбрана необходимая гидроаппаратура. Проектируется 3D модель основных сборочных узлов и по ним выполняются сборочные чертежи насосной станции.

Результат 1

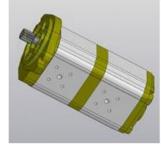


Рисунок 1 - Тандемный шестеренный насос

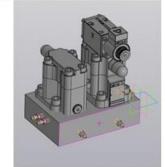


Рисунок 2 - Предохранительная плита

Результат 2

Рисунок 3 - Насосная станция

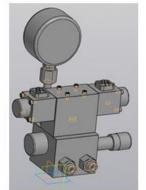


Рисунок 4 - Распределитель с манометром

Что получилось

Были созданы ЗД модели тандемного шестеренного насоса (рис.1), предохранительной плиты (рис.2), насосной станции (рис.3), распределителя с манометром (рис.4).

Заключение

- Была спроектирована насосная станция к прессу для сборки и разборки гусеничных траков.
- Список литературы
- Теория и проектирование гидропневмосистем: Ю.А. Андреевец, Ю.В. Сериков. -Гомель: ГГТУ им. П.О. Сухого, 2007. - 42c.
- Станочные гидроприводы: Справочник Свешников В.К. Усов А.А. 2005г. - 36 с.

Проектирование гидростанции для управления дисковым тормозом буровой лебедки MAS6OOO GD

Новиков Д. В. (студент ГА-51) Научный руководитель – Невзорова А.Б. (д.т.н., профессор) ГГТУ им. П.О.Сухого., кафедра НГРиГПА

• Введение

На самом деле 3D моделирование играет важную роль в жизни современного общества.

Сегодня оно широко используется в сфере маркетинга, архитектурного дизайна и кинематографии,

не говоря уже о промышленности.

3Д-моделирование позволяет создать прототип будущего сооружения, коммерческого продукта в объемном формате.

Важную роль 3D моделирование играет при проведении презентации и демонстрации какого-либо продукта или услуги.

• Цель работы

3D-моделирование процесс создания трёхмерной модели объекта. Задача 3D-моделирования празработать зрительный объекта.

• Методика выполнения

Для выполнения поставленной цели, необходимо выполнить следующее задачи:

-собрать на гидробам разработанные узлы и доподнительные устройства (фильтр масле указатель, датчики);

-соединить устройства трубопроводом в соответствия со схемой гидравлической.

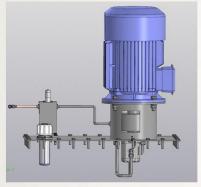


Рисунок 1 — Крышка бака с насосным агрегатом

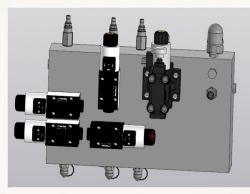


Рисунок 2— Блок управления

Рисунок 3 — Бак гидравлический



Рисунок 4 – Гидростанция

• Что получилось

В ходе лабораторных работ мною были спроектированы 3Д модели: насосного агрегата; бака гидравлического; блока управления; гидравлической станции; схемы соединения трубопроводов.

Были спроектированы сборочные чертежи и спецификации данных моделей в последующем данные чертежи и схемы могут применяться, для модификации буровой лебедки MAS6000.

Мною за время проведения лабораторных работ был полностью

Заключение

Были спроектированы сборочные чертежи и спецификации данных моделей в последующем данные чертежи и схемы могут применяться, для модификации буровой лебелки MAS6000.

Мною за время проведения лабораторных работ был полностью освоен навык объёмного моделирования.

• Список литературы

1. Теория и проектирование гидропневмосистем/ автсост.:Ю.А. Андревеец, Ю.В. Сериков.- Гомель: ГГТУ им. П.О, Сухого, 2007 .-42c

2. Азбука КОМПАС-3D. Аскон – 478 с.-2020.

3. FOCT 20799-88

Контакты

Email: super.nov-danik@maiд.ru Телефон: +375297314987

