МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧЕРЕЖДЕНИЕ ОБРОЗОВАНИЯ «ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ П.О. СУХОГО»

Кафедра «Нефтегазоразработка и гидропневмоавтоматика»

Студенческая научно-учебная конференция «Организация, планирование и управление процессом разработки» 31 октября 2022 года

Доклад на тему: «Организация работ по сооружению буровых установок»

Гомель, 2022

Выполнил: студент гр. НР-51 Чернецкий П.С. Проверил: ст. препод. Абрамович О.К.

Весь этап монтажа БУ можно разделить на три этапа

Комплекс монтажных работ определяется: назначением и конструкцией скважины; условиями проводки; способом бурения; применяемым технологическим оборудованием

ПОДГОТОВИТЕЛЬНЫЕ РАБОТЫ

Подготовка площадки для бурения, кустового основания или/и фундамента для буровой установки, подъездных путей, коммуникаций для подвода энергии, водоснабжения.

ТРАНСПОРТИРОВКА И МОНТАЖ ОБОРУДОВАНИЯ И ТЕХНОЛОГИЧЕСКОГО ИНСТРУМЕНТА

Транспортировка и монтаж оборудования и технологического инструмента (буровой инструмент, насосные и очистные станции, различные резервуары и др.).

СБОРКА УЗЛОВ БУРОВОЙ УСТАНОВКИ И БУРЕНИЕ ШУРФА

Проверка и наладка основных узлов буровой установки, оснастка талевой системы, установка ротора, размещение бурового, слесарного и другого вспомогательного оборудования, бурение шурфа.

ВЫБРАТЬ КЛАСС БУРОВОЙ УСТАНОВКИ

Расчет работ по сооружению буровой установки

Выбор буровой установки требует тщательного расчета всех показателей и нагрузок

При этих условиях вес кондуктора:

GK = lK*gK = 400*1000= 0,4 MH

Вес промежуточной колонны:

Gn = ln*gn = 2200*590= 1,3 MH

Вес эксплуатационной колонны:

Gə = lə*qə = 3000*320= 0,96 MH

Вес бурильных труб:

Gбт = lбт*gбт = 2800*276= 0,77МН

Вес утяжеленных бурильных труб (УБТ):

Gy6T = ly6T*gy6T = 200*1450= 0,29MH

Вес бурильной колонны с УБТ:

Gбк = Gбт+ Gубт = 0,77+0,29 = 1,06 MH

УСЛОВИЕ ЗАДАЧИ

Данные по скважине. Конструкция скважины. Эксплуатационная колонна.

РЕШЕНИЕ ЗАДАЧИ

Были рассчитаны: вес кондуктора, вес промежуточной колонны, вес эксплуатационной колонны, вес бурильны вес утяжеленных бурильных труб, вес бурильной колог утяжеленными бурильными трубами..

ВЫБОР БУРОВОЙ УСТАНОВКИ

Исходя из расчётов была выбрана буровая установка пятого класса по ГОСТ 16293-82

Скважина глубиной L = 3000м. Конструкция скважины:

- кондуктор диаметром 340мм, толщина стенки 11 мм, вес 1 м. кондуктора 1000 Н\М,
- промежуточная колонна диаметром 245, толщина стенки 9,5 мм, вес 1м = 590H/м.
- Эксплуатационная колонна диаметром 146 мм, вес 1 м = 320 H/м.

Глубина спуска

- кондуктора lк =400м, lп = 2200 м,
- эксплуатационной колонны lэ = 3000м.

Таким образом, наибольшую нагрузку будет испытывать установка при спуске промежуточной колонны, а вес бурильной колонны составит 1,06 НМ. Для этой глубины при роторном бурении разрывная прочность бурильных труб должна быть не менее R6т= k3 G6к =1,5* 1,06 = = 1,59MH (k3 = 1,5). Для бурильных труб разрывная

Для бурильных труб разрывная прочность 1,56 MH. Этим требованиям по допустимой нагрузке на крюке удовлетворяет буровая установка пятого класса по ГОСТ 16293-82 с допустимой нагрузкой на крюке 2 MH или 200т.

Заключение

Таким образом, при разработке темы «Организация работ по сооружению буровых установок» были выполнены следующие пункты:

- изучена и построена схема управления работ при монтаже/ демонтаже;
- проведены расчёты по оценки эффективности инвестиционных проектов в нефтяной и газовой промышленности,
- рассчитана годовая экономия на эксплуатационных издержках. Подводя итог, можно сказать, что выполнение данной курсовой работы способствовало лучшему пониманию структуры производственного процесса по сооружению буровых установок.

Список литературы:

- 1. Буровые комплексы. Современные технологии и оборудование / под ред. А.М. Гусмана и К.П. Порожского. Екатеринбург: УГГА, 2002. –592 с.
- 2. Проталов В.Н., Султанов Б.З., Кривенков С.В. Эксплуатация оборудования для бурения скважин и нефтегазодобычи: учебник. М.:Недра, 2004.
- 3. Муравенко В.А. Буровые машины и механизмы: справочно-иформационное издание. Том 2/ В.А. Муравенко, А.Д. Муравенко, В.А. Муравенко. Москва-Ижевск: Ин-т компьютерных исследований, 2002. 464 с.
- 4. Бабаян Э. В. Инженерные расчеты при бурении [Электронный ресурс] : учеб. пособие / Э. В. Бабаян, А. В. Черненко. Вологда: "ИнфраИнженерия", 2018. 440 с.
- 5. Национальный правовой Интернет-портал Республики Беларусь, 23.02.2018, 8/32821

